1. <th id="df3dq"></th>

        <dd id="df3dq"><track id="df3dq"></track></dd><em id="df3dq"><acronym id="df3dq"><u id="df3dq"></u></acronym></em>
            <th id="df3dq"><big id="df3dq"><video id="df3dq"></video></big></th>
              1. <th id="df3dq"></th>

                <li id="df3dq"><tr id="df3dq"><u id="df3dq"></u></tr></li><tbody id="df3dq"><track id="df3dq"><video id="df3dq"></video></track></tbody><th id="df3dq"></th>
                <span id="df3dq"></span>

                陶瓷基板在LED電子領域應用現狀與發展

                更新時間:2012-03-27

                  相對于塑料材料,陶瓷材料也在電子工業扮演者重要的角色,其電阻高,高頻特性突出,且具有熱導率高、化學穩定性佳、熱穩定性和熔點高等優點。在電子線路的設計和制造非常需要這些的性能,因此陶瓷被廣泛用于不同厚膜、薄膜和電路的基板材料,還可以用作絕緣體,在熱性能要求苛刻的電路中做導熱通路以及用來制造各種電子元件。

                各種陶瓷材料的比較

                Al2O3

                  到目前為止,氧化鋁基板是電子工業中最常用的基板材料,因為在機械、熱、電性能上相對於大多數其他氧化物陶瓷,強度及化學穩定性高,且原料來源豐富,適用于各種各樣的技術制造以及不同的形狀。

                BeO

                  具有比金屬鋁還高的熱導率,應用于需要高熱導的場合,但溫度超過300℃后迅速降低,最重要的是由于其毒性限制了自身的發展。

                AlN

                  AlN有兩個非常重要的性能值得注意:一個是高的熱導率,一個是與Si相匹配的膨脹系數。缺點是即使在表面有非常薄的氧化層也會對熱導率產生影響,只有對材料和工藝進行嚴格控制才能制造出一致性較好的AlN基板。目前大規模的AlN生產技術國內還是不成熟,相對于Al2O3,AlN價格相對偏高許多,這個也是制約其發展的瓶頸。

                  綜合以上原因,可以知道,氧化鋁陶瓷由于比較優越的綜合性能,在目前微電子、功率電子、混合微電子、功率模塊等領域還是處于主導地位而被大量運用。

                基板種類及其特性比較

                  現階段較普遍的陶瓷散熱基板種類共有HTCC、LTCC、DBC、DPC四種,其中HTCC屬于較早期發展的技術,但由于燒結溫度較高使其電極材料的選擇受限,且制作成本相對昂貴,這些因素促使LTCC的發展,LTCC雖然將共燒溫度降至約850℃,但缺點是尺寸精確度、產品強度等不易控制。而DBC與DPC則為國內近幾年才開發成熟,且能量產化的專業技術,DBC是利用高溫加熱將Al2O3與Cu板結合,其技術瓶頸在于不易解決Al2O3與Cu板間微氣孔產生之問題,這使得該產品的量產能量與良率受到較大的挑戰,而DPC技術則是利用直接鍍銅技術,將Cu沉積于Al2O3基板之上,其工藝結合材料與薄膜工藝技術,其產品為近年最普遍使用的陶瓷散熱基板。然而其材料控制與工藝技術整合能力要求較高,這使得跨入DPC產業并能穩定生產的技術門檻相對較高。

                  在大功率、高密度封裝中,電子元件及芯片等在運行過程中產生的熱量主要通過陶瓷基板散發到環境中,所以陶瓷基板在散熱過程中擔當了重要的角色。Al2O3陶瓷導熱率相對較低,在大功率、高密度封裝器件運行時須強制散熱才可滿足要求。BeO陶瓷導熱性能最好,但因環保問題,基本上被淘汰。SiC陶瓷金屬化后鍵合不穩定,作為絕緣基板用時,會引起熱導率和介電常數的改變。AlN陶瓷具有高的導熱性能,適用于大功率半導體基片,在散熱過程中自然冷卻即可達到目的,同時還具有很好的機械強度、優良的電氣性能。雖然目前國內制造技術還需改進,價格也比較昂貴,但其年產增率比Al2O3陶瓷高4倍以上,以后可以取代BeO和一些非氧化物陶瓷。所以采用AlN陶瓷做絕緣導熱基板已是大勢所趨,只不過是存在時間與性價比的問題。

                結論

                  由上述可明確的比較出個別的差異性。其中,LTCC散熱基板在LED產業中已經被廣泛的使用,但LTCC為了降低燒結溫度,于材料中加入了玻璃材料,使整體的熱傳導率降低至2~3W/mK之間,比其他陶瓷基板都還要低。再者,LTCC使用網印方式印制線路,使線路本身具有線徑寬度不夠精細、以及網版張網問題,導致線路精準度不足、表面平整度不佳等現象,加上多層疊壓燒結又有基板收縮比例的問題要考量,并不符合高功率小尺寸的需求,因此在LED產業的應用目前多以高功率大尺寸,或是低功率產品為主。而與LTCC工藝相似的HTCC以1300~1600℃的高溫干燥硬化,使生產成本偏高,居于成本考量鮮少目前鮮少使用于LED產業,且HTCC與LTCC有相同的問題,亦不適用于高功率小尺寸的LED產品。另一方面,為了使DBC的銅層與陶瓷基板附著性佳,必須因采用1065~1085℃高溫熔煉,制造費用較高,且有基板與Cu板間有微氣孔問題不易解決,使得DBC產品產能與良率受到極大的考驗;再者,若要制作細線路必須采用特殊處理方式將銅層厚度變薄,卻造成表面平整度不佳的問題,若將產品使用于共晶/覆晶工藝的LED產品相對較為嚴苛。反倒是DPC產品,本身采用薄膜工藝的真空濺鍍方式鍍上薄銅,再以黃光微影工藝完成線路,因此線徑寬度10~50um,甚至可以更細,且表面平整度高(<0.3um)、線路對位精準度誤差值僅+/-1%,完全避免了收縮比例、網版張網、表面平整度、高制造費用…等問題。雖LTCC、HTCC、DBC、與DPC等陶瓷基板都已廣泛使用與研究,然而,在高功率LED陶瓷散熱領域而言,DPC在目前發展趨勢看來,可以說是最適合高功率且小尺寸LED發展需求的陶瓷散熱基板。

                  1. <th id="df3dq"></th>

                    <dd id="df3dq"><track id="df3dq"></track></dd><em id="df3dq"><acronym id="df3dq"><u id="df3dq"></u></acronym></em>
                        <th id="df3dq"><big id="df3dq"><video id="df3dq"></video></big></th>
                          1. <th id="df3dq"></th>

                            <li id="df3dq"><tr id="df3dq"><u id="df3dq"></u></tr></li><tbody id="df3dq"><track id="df3dq"><video id="df3dq"></video></track></tbody><th id="df3dq"></th>
                            <span id="df3dq"></span>
                            青柠在线观看免费高清完整版_清纯无码岛国动作片AV_chinese老女人老太婆china_人人狠狠综合久久亚洲